首张黑洞照片拍完后,科学家又计划对黑洞“录像”了

如何去拍摄一个连光线都无法逃脱的天体“黑洞”?设想尽管光线一旦进入黑洞便无法逃离,但是我们可以拍摄它的边缘,就是那些即将落入黑洞之前的气体物质。通过这样的观测,我们也可以去检验爱因斯坦的广义相对论,另一方面,我们也可以把星系核心的黑洞作为人类研究的实验室。

 

虽然武仙座A的照片非常美,但上面这张图才是经典。这是同一区域拍出来的射电波段的图像。从图中我们可以看到两股喷流从星系的内部喷涌而出,延伸超过距离达150万光年。

 

究竟是什么在驱动这样的能量输出?要知道,这样的喷流释放能量大约相当于200亿颗超新星同时爆发。能够做到的就只有一种可能性,那就是一个快速旋转的超大质量黑洞,大量物质正在快速被吞噬,并同时以接近光速的速度向两侧释放喷流,穿越整个星系,而我所在的实验室的目标正是要深入其中,看能否目睹黑洞边界。

 

1979年,法国物理学家让·皮埃尔·卢米涅用推导过程,第一次描述了假如人类能直接看到黑洞,将会出现什么效果。他描述说,人类将看到黑洞的“阴影”(shadow),除了圆盘状的边缘之外,黑洞背后的部分也会在上下位置上显示出来。

 

根据爱因斯坦的广义相对论和德国物理学家史瓦西的研究成果,黑洞的阴影面积是可以计算的,反过来,我们也可以通过这次观测,来验证爱因斯坦的理论是否精确。卢米涅还不满足于推导过程,他绘制出了世界上第一幅黑洞外观的效果图。

 

通过观察光线在黑洞附近时的弯曲情况,我们可以看到单个光线会绕着事件视界转圈。随着黑洞周围的高温气体产生的光线越来越多,大量光线会从黑洞后方照射过来。

 

那么,我们是如何做到这一切的呢?

 

黑洞边缘的光线,要穿越黑洞旁的高温气体,穿越宇宙空间中的恒星际物质,穿越地球的大气层,并最终被我们观测到,大概也就只有一种波长的光线有可能:那就是波长大约是1毫米左右。而要想对其进行观测,我们将需要一个地球那么大的射电望远镜,另外,它的分辨率相当于你站在美国洛杉矶,能看清波士顿或者纽约一张报纸上的字。

 

目前,人类不可能造出那么巨大的望远镜,当然,我们也不会那样干。我们使用的是一种叫做“甚长基线干涉”(VLBI)的技术:将分布在世界各地的望远镜连接起来,用极为精准的原子钟校准时间,开展同步观测,其误差每1000万年不超过1秒。这样就相当于构建了一台口径和地球直径相当的巨型射电望远镜。

 

每台望远镜都会获得海量数据,我们都是用硬盘来存储,并通过快递公司快递硬盘的方式来传输数据,因为数据量太大,在线传输根本满足不了需求。

 

举个例子,想要从南极望远镜向数据中心在线传输它所采集的所有数据,要花费25年的时间,因此还不如等天气好的时候,用飞机直接把硬盘送走,或许真的没有比用波音747飞机直接运送硬盘更高效的数据传输方式了。

 

过去的10年里,我们到处联络世界各地的望远镜,西班牙,智利,美国夏威夷和亚利桑那。最终在2017年的4月份,我们成功地协调所有望远镜在精准的同一时间,对同一个黑洞进行了同步观测。

 

2019年4月10日,EHT合作组宣布,已经成功获得M87核心超大质量黑洞的图像,这张照片就是非常有把握的,扎实的结论。在EHT合作组中,我们每一次做出的决定,或得出结论,都会通过不同算法,或者不同角度,采用两种,三种甚至四种不同角度去验证,如果能得到同样的结果,那么这个结果,我们才会采纳。

 

首张黑洞照片显示的是相当于650亿倍太阳质量的物质,聚集在一个圆形的光子轨道边界区域范围内的场景,其大小完全符合爱因斯坦的理论预期。图像的中间位置就是事件视界,在其内部,就连光线都无法逃脱;图像的下方比较明亮,这是因为你正在目睹以接近光速的速度,围绕黑洞周围运行的超高温气体物质。当它朝向我们的视线方向运动时,它看上去会更明亮;而在图像的上方,情况反过来,物质远离你而去,它会变得暗淡一些。

 

这是迄今为止,超大质量黑洞存在的最佳直接证据。而上下不同区域的明亮情况所指示的物质运动情况,可以让我们估算出黑洞转动的自转轴方位。我们也第一次有机会弄清楚,这个质量高达650亿倍太阳质量的巨无霸,在不断吞噬气体物质的同时,其自身方位朝向是如何的,因而可以产生我们在开始时向大家所展示的那种强大喷流。

 

数十年来,我们只能通过计算机去做模拟,而现在确定了,之前我们所做的都是正确的,我们正在沿着正确的道路前进。

 

这个黑洞到底有多大呢?以太阳系为例,你就可以看出这个黑洞到底有多大:整个太阳系都可以放进去。迄今飞的最远的人造飞船旅行者1号飞船,也才刚刚飞到事件视界边缘,在这个巨无霸黑洞面前,人类相形见绌。

 

那么未来我们还将要做什么呢?

 

完成了首张黑洞照片后,接下来我们要做什么呢?那就是 “下一代事件视界望远镜”。做好这件事的关键就是位置。接下来,我们将尝试把望远镜放在我们想要的位置上,而不是像之前那样,只能在现有的望远镜基础上。选择合适的位置能更好地提升观测精度,让图像更加清晰。不过,目前这还只是初步的设想。

 

作为第一期工程,我们计划在未来3~4年进行设计规划,并在第二期工程期间,开始尝试自行建造许多新的台站。这些台站的望远镜可能不会太大,但我们计划是灵活地使用它们。与此同时,我们的数据带宽将提升4倍,达到256Gb/s。

 

随着未来观测波段的扩展,数据量也将飞升。此前单波段的数据量已经十分惊人,已超过了超过10PB(编者注:1PB=1024TB),未来的数据量或许会突破100PB。我想,专业人士看到这样的数据量会发抖吧!如何存储,如何运输,如何处理这些数据将成为一个问题。未来,我们将需要新的超高速数据传输技术,或者云数据存储方案等等,各方面都需要做优化。但不管如何,我们的目标是未来不再是拍摄黑洞的静止照片,而是拍摄录像,从而帮助解答一些非常基本的物理学问题。比如,现在的事件视界望远镜无法观测到星系喷流中非常精细的一些扰动和起伏状态,但是下一代事件视界望远镜就可以做到。如此,将可以极大地帮助我们加深对黑洞如何产生星系喷流的认识。

 

再比如,有了下一代事件视界望远镜,我们将可以尝试拍摄黑洞的实时录像,可以很方便地追踪不同的高温气体团的运动轨迹。

 

在此之前我们验证了爱因斯坦理论中关于光线在时空中弯曲的预言,而这一次,我们将可以检验爱因斯坦关于高温气体物质在黑洞周围的运动的预言。我们可以测定它围绕黑洞公转一周将需要多少时间,比如半个小时等,结合黑洞的质量数据,我们将可以开展这样的检验。

 

另外,我们还可以尝试将望远镜放到太空中去。在低地球轨道,甚至地球同步轨道上安置望远镜,从而进一步提升望远镜的整体性能。

 

      首张黑洞照片的问世,离不开“事件视界望远镜国际合作组”的整体努力,这项工作是由来自超过20个国家和地区,60多家大学和研究机构的超过200名科学家共同参与的结果。 

本文采编:CY
下一篇

微信小游戏30岁及以上用户占比达66% 更受女性欢迎

1月9日上午消息,2020年微信公开课Pro在广州开课,主题为 “ 未完成Always Beta”。小游戏产品经理介绍,小游戏更受女性、中年群体、三四五线用户喜爱。

如您有个性化需求,请点击 定制服务

版权提示:华经产业研究院倡导尊重与保护知识产权,对有明确来源的内容均注明出处。若发现本站文章存在内容、版权或其它问题,请联系kf@huaon.com,我们将及时与您沟通处理。

人工客服
联系方式

咨询热线

400-700-0142
010-80392465
企业微信
微信扫码咨询客服
返回顶部
在线咨询
研究报告
商业计划书
项目可研
定制服务
返回顶部